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Stairs : T he Only Way to Go 

Abstract . In plane Euclidean geometry, any polygonal regions Q, Q' 
wit h equal area can be dissected into t he same number n of pai rwise 
congruent subregions. This is easy to see if Q is a unit square, Q' 
is an (1"11.+ 1)/ 1"11. by m.f(m + 1) rcctangle for some integer nt , and 
n = 111.+ 1 . During Lhe 1920s the renowned logician Alfred Tarski, then 
teaching elementary geomet.ry in \Varsaw, noticed a different dissection 
for t.he same Q, Q' with n = 3 . He reported it in a pioneering journal 
for secondary-school teachers and students, then asked, are there such 
dissect ions with n = 2? Henryk J\'loese, a schoolteacher, responded 
yes, in some cases: m-step "staircase" disscctions are possi ble fo r 
these dimensions. Mocse conjectured t hat the only such dissections of 
Q,Q' are t.hosc . Tarski reported that this had been confi rmed , but 
the proof was too complex to publish. Decades later, Tarski presented 
t.his material to general acad emic audiences that included the present 
authors. We regarded fo,'loese's conjecture as a challenge, devised a way 
to verify it, and present that argument. here. Using only elementary 
geometry, wit h Illany figures, it suggests what met hods Tarski might 
have expect.ed for solving oLher problems ill Lhat journal , but is unlike 
any arguments in related literature. Infon nat.ion is included about 
Polish efforts in t he 1930s to im prove secondary-school instruction, 
and about t he role of Tarski's research seminar. 

2010 Mathematics Subject Classification: OtAGO (OtA70, OlA73). 

Key wonls and phrases: Mathemat.ics and mat.hematicians of t he 20th 
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Preface. T his paper is about an application of elementary plane ge
ometry to a simple but rather unusual problem posed in 1931 by the 
renowned logician Alfred Tarski , who had been studying the axiomati
zation of geometry intensively in connection with his research on logic 
and with his duties as a secondary-school geometry teacher in vVar
saw. The problem would test the formulation of such a. .. doms as well 
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as stimulate the imagination and challenge the proficiency of geometry 
students and teachers. A year later, Tarski claimed that the problem 
had been solved by colleagues, but a full solution was too involved to be 
published. Decades later, Tarski repeated that in lectures. The present 
authors, who attended, offer a complete solution here. Our techniques 
are probably like what Tarski had in mind, but are quite different from 
methods usually presented in schools. Main features of our solution are 
its requirement for ultraprecise statement of the problem, and the or
ganization of its proof. These lie outside the mainstream of elementary 
geometry instruction. We are impressed that in 1930 Tarski and his 
colleagues were evidently concerned with methods that foreshadowed 
those developed decades later for computational geometry. 

1. Introduction. According to a fundamental principle of plane 
Euclidean geometry, any polygonal regions Q, Q' with equal area can 
be dissected into the same number n of pairwise congruent subregions: 

Q = Ql U ... U Qn and Q' = Q~ U ... U Q~ 

with Qi ~ Q: for i = 1, ... , n. 
(1) 

For example, if m is a positive integer, then a unit square Q and a 
rectangle Q' with dimensions (m + l)/m and m/(m + 1) have the 
same area and figure 1 shows such a dissection with n = m + 1 . 

Q 

I I I Q' 

Fig. 1. Dissections into n = 5 rectangles, congruent in pairs (m = 4) 

Are there other ways to show that two polygons have equal area? The 
second author (Smith) recalls considering in tenth grade, 1955, the ques
tion "Can you think of a way to transform a pentagon into a quadrilat
eral?" from the 1937 textbook by John C. Stone and Virgil S. Mallory 
[13, page 362]. 

Alfred Tarski earned the PhD in Warsaw in 1924 and immediately 
published a major contribution [14] to area theory. He was starting 
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his career several years after the newly independent Poland had greatly 
expanded its university faculties. Hardly any university positions re
mained open. Teaching geometry at a Warsaw secondary school, he 
analyzed a proof of the Pythagorean theorem in the 1926 textbook by 
Wladyslaw Wojtowicz [21 , page 168] and noticed different dissections 
for the same Q, Q' with n = 3, shown here in figure 2. Readers can 
verify that these are possible whenever 0 < y < 1 . 

Q 
Q' 

1 1 

Y V1+y 2 

1 VI +y2 

Fig. 2. Tarski's dissections into n = 3 polygons. 

During the 1920s, Tarski and other Polish mathematicians lobbied 
for greater support for secondary-school mathematics. Responding in 
1930, Antoni M. Rusiecki, a curriculum developer and teacher trainer, 
founded the monthly mathematical journal Pammetr for secondary
school teachers and their best students. In 1931 he started its supple
ment, Mlody matematyk (Young Mathematician) specifically for stu
dents.1 Tarski contributed an elegant article that included the question 
whether there is an even more economical dissection of Q, Q' with 
n = 2. More generally, he defined the degree of equivalence of any two 
plane polygonal regions to be the smallest number n of subregions in a 
dissection of the form (1) , then asked, what is the degree of equivalence 
of a square Q and a nonsquare rectangle Q' with the same area? 
Figure 2 shows that the degree is at most three. Can they be dissected 
into two polygonal subregions to show that the degree is actually two? 2 

1 For more infonnation on those efforts, see the notes at the end of this paper. 

2See Tarski's article [171: figure 2 and the question are on pages 37 and 4(}-41. 
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Fig. 3. Alfred Tarski around 1930 Fig. 4. Henryk Moese in 1935 

Henryk Moese, a schoolteacher in the small Polish city K~pno, 
responded a year later: yes, in some cases. The m-step staircase 
dissections in figure 5 are possible in the cases depicted there, with 
m = 1,2,.... Moese conjectured that the only dissections of Q, Q' 
each into two pairwise congruent polygonal subregions are these. That 
would imply that the degree of equivalence of Q, Q' is three unless the 
dimensions of Q' are m/(m + 1) by (m + l)/m for some integer m, in 
which case the degree is two. 

Q Q' 

Q' must have dimensions 
....!!!.... by mt1 
m+1 m . 

Here, m = 4. 

p = 8~QA = 8~QB 

pI = 8~Q' A' = 8~Q' B' 

Fig. 5. Moese's m-step staircase dissections into n = 2 polygons 3 

Neither Tarski nor Moese mentioned any specific background source 
for this investigation except Wojtowicz's textbook [21]. That was an 
attempt to streamline for Polish students the famous text [9] by Fed
erigo Enriques and U go Amaldi, which Tarski had cited [14, page 47] to 
support his research in area theory. The Italians' text was mathemati-

3See Moese's article [12, page 308]. 
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cally correct and delightful reading for professional mathematicians, but 
made no allowance for those whose reading and study skills had not yet 
attained that level. Wojtowicz's book was a slight improvement.4 

Alongside his secondary-school teaching, Tarski remained deeply in
volved with research. In 1932 he reported that his University colleagues 
Adolf Lindenbaum and Zenon Waraszkiewicz had verified Moese's con
jecture.5 Tarski wrote [18, page 312] that their proof "is somewhat 
complicated and requires some subtle methods of reasoning." Tarski 
did not include that in his article. Indeed, it is not immediately clear 
how one should argue that the only way to achieve the desired dissec
tion is to use a staircase; moreover, describing the process accurately 
would require many tedious details. 

Fig. 6. Adolf Lindenbaum 
around 1922 

Fig. 7. Zenon Waraszkiewicz 
around 1930 

Tarski published no more on this subject but did present it in ele
gant lectures to mathematically literate general audiences. The present 
authors attended those events. Tarski's assessment of Moese's conjec
ture posed a challenge. We devised a way to verify it, and present that 
argument here. It suggests what methods Tarski might have expected 
to be used for solving some other problems that he posed in the same 
journal, but is unlike any argument that we have encountered in related 
literature. It requires precise formulation somewhat like what is needed 

4The 1937 Stone & Mallory text [13] mentioned earlier was far more accessible, 
but ignored many important considerations. Unlike most other texts, however, it 
encouraged students to discover geometric properties on their own. Tarski himself 
contributed to a textbook: see the notes at the end of this paper. 

5For information about these mathematicians see section 5 of this paper. 
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for recent developments in computational geometry.6 

2. Precision. To verify Moese's conjecture-that the only dis
sections of a square Q and a nonsquare rectangle Q' each into 
two pairwise congruent polygonal subregions are the staircases of figure 
5 - requires phrasing several ideas more precisely than usual: congru
ence, polygonal region, dissection, and the meaning of only. This section 
will provide that precision. Readers may want to sketch those notions 
and the associated ones defined and described next. 

Two point sets are congruent (~) just when they are related by 
a motion, or isometry. Isometries are the distance-preserving transfor
mations of the set of all points: translations, rotations, reflections, and 
glide reflections. Isometries that agree at three noncollinear points must 
agree everywhere.7 

The segment I p q I between end points p, q contains both; its other 
points are called internal. A (simple) polygonal path is a finite linearly 
or cyclically ordered set of edge segments, such that two edges intersect 
just when they are consecutive, noncollinear, and share a common end, 
which is called a vertex. The distinction between the orderings is re
vealed by the context and by the usage of words such as consecutive. 
Cyclically ordered paths are called (closed) polygons. For example, the 
square and rectangle in figure 5 represent closed paths, each consisting 
of four segments in cyclic order. The staircases depicted by heavy lines 
represent nonclosed paths, each consisting of seven segments in linear 
order. The interior and exterior of a polygon are the sets of points 
q, not in any edge, such that some ray starting at q and not con
taining any vertex intersects the edges at an odd or at an even number 
of points, respectively. The polygon and its interior and exterior are 
disjoint, and their union is the entire plane. The union A of a polygon 
and its interior is called a polygonal region; the polygon itself is called 
the boundary 8A of A. Figure 8 shows a shaded polygonal region A, 
its boundary 8A, and interior and exterior points q and q'. All these 

BTarski lectured to high·school students around 1967 in Berkeley and in 1970 to 
a general audience in Regina, Canada. For his problems and some solutions, see 
chapter 12 of the book [11], which is devoted to Tarski's early life and work. For 
computational geometry, compare the 2011 text [5] by Satyan Devadoss and Joseph 
O'Rourke. 

7See Amaldi [1], to which Tarski referred in his research paper [14, page 59], or the 
1941 book by Richard Courant and Herbert Robbins [3, chapter V]. Few resources 
treat this subject with the precision appropriate for the present study; reference [5] 
or [10] may be helpful. 
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notions are preserved by every isometry a: for example, the image set 
alAI is a polygonal region and a[8A] = 8a[A]. 

3 intersections with 8A: 
q\:):,.,--j1~ q is interior to A 

q' 

2 intersections with 8A: 
q I is exterior to A 

Fig. 8. Polygonal region A with boundary 8A 
and interior and exterior points 

In this paper, boundaries have more structure than what is needed 
for most studies: they are families of segments, not sets of points. The 
following concept is employed in stating Moese's result and his conjec
ture: for a subregion A of a polygonal region Q as in figure 5, ct'QA 
will denote the family of all segments of 8A whose points do not all 
fall in segments in the boundary of Q.8 

• Maese's Result. Figure 5 depicts m-step staircase dissec
tions Q = AUB and Q' = A'UB' of square and nonsquare 
rectangles into polygonal subregions with disjoint interiors, 
such that A"'" A', B"'" B' , and the sets 'P = 8-,qA = 
8, QE and P' = 8, Q' A' = 8, Q' E' (dark lines) are polygo
nal paths. 

• Conjecture. Moreover, for any such pair of dissections the 
sets P U 8Q and P' U 8Q' are congruent to the corre
sponding sets for some m-step staircase dissections. 

The discussion in the following sections refers to isometries a and J3 
that map A onto A' and B onto B', respectively. 

3. Orientation. The main task of this paper is to formulate in 
the ordinary language of elementary geometry an argument that can be 
made into a proof of a formal statement of Moese's conjecture in an 
axiomatic theory. The previous section 2 has clarified our terminology. 

'Tbiscanbephrased 8'QA={SE8A,SI'U8Q}=8A-~U8Q. using U 
and ~ for union and power set. 
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The organization of the argument goes somewhat beyond the usual level 
of elementary geometry courses. This section 3 begins the analysis of 
arbitrary dissections Q = A u B and R.,. = A' U B' into polygonal 
subregions whose interiors are disjoint, such that A ~ A' and B ~ B', 
and such that the sets P = a~QA = a~QB and pI = a~Q,A' = a~Q,B' 
are polygonal paths that separate the pairs of subregions. Some partial 
results about the orientation of the paths within Q and R.,. are 
derived. The following section 4 on construction shows that the paths 
must be staircases like Moese's. To check that a particular axiom system 
for elementary geometry actually supports this argument would require 
more elaborate formalization. 

Our argument starts with two lemmas that result from analytic
geometry calculations. The first is simple. Let 0 < x < 1 and consider 
a rectangle R", with horizontal edges of length x < 1 and vertical 
edges of length l/x> 1. 

LEMMA 3.1 The diagonals of R.,. have length 

V x2 + :2 = V (x - ~ r + 2 > 0. 

Thus, no isometry maps opposite comers of R.,. into a unit square Q. 

Next, we consider how certain L-shaped portions of the boundary of 
Q might be mapped into R.,.. The union of perpendicular segments of 
lengths 1 and z that share a common end will be called an L z . The 
second segment will be dashed in figures, and the other two ends will 
be called free . 

LEMMA 3.2 The only case in which an L1 lies inside R", is depicted 
in figure 9a. 

PROOF (extending over this paragraph, figures 9b to lOb, and the fol
lowing three paragraphs). Consider an arbitrary L z in R.,.. Its unit 
segment is too long to be horizontal, so the horizontal lines Hand J 
through its free end and through its vertex must be distinct. If the other 
free end q should fall between H and J as in figure 9b, then the L z 

can be translated and rotated within R.,. so that its unit and dashed 
segments become vertical and horizontal. In that case, z:::; x < 1. In 
particular, no L1 can lie in R", in this position. 

In the other case, q will fall on the sides of H and J opposite one 
of the horizontal edges of R.,. j call that the bottom edge. Moreover, 
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R, 
1/x 

R, 

I 
q " 'f' 

J z'·, . p 
q 

L, L, q. ( 

'" R, 
1/x =,, 2 .•... 

" ' " J+-------c.,,----1 

l /x> 1 
1 ... :;", 

P=<X,Y> 
y = l/zJ2+------ilP 

1 H 
0 

H'+'--------1 

x<1 0 x 

(a) (b) (c) 

Fig. 9 

q will fall on the same side of the vertical line through the vertex of 
the Lz as one of the vertical edges of R..; call that the left edge, as 
depicted in figure 9c. Establish Cartesian coordinates with axes along 
those edges of Rx. Translate the Lz within R.. to obtain a congruent 
image (dotted) with vertex p on the right edge and the free end 0 

of its unit segment on the bottom edge. Rotate that image within Rx 
so that p moves downward on the right edge, and 0 leftward until 
it reaches the bottom left corner; p will then have coordinates (x, y) 
with 0 < y :s: 1/ x and x2 + y2 = 1. The task now is to determine, in 
this case, the constraints on z and x corresponding to the requirement 
that this copy of L z lie in Rx. 

l /y r 

.8 
R, t l /x 

R, 
l/x 

l /y r 

G···. d'" 
q' .. z q"':-

y p y P 

1 1 

x o x 

(a) (b) 
Fig. 10 
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Let G be the line ~ql. Calculate its slope -x/y, vertical 
intercept r = (O,l/y), and distance 

pr = 1(0 _ X)2 + (~_ y)2 = J 1 _ 1 = ~ = x . (2) V y y2 Y VI - x2 

If r should fall outside Rx as shown in figure lOa, then l/x < l/y 
and therefore x > y. Line G would intersect the top edge of Rx 
at a point s=(x.,l/x) with O<x.<x. Triangle f!.opr would 
be similar to f!. s P t, where t is the top right corner of Rx , and 
therefore 

_ ts·or 
ps=---

op 
X -Xs 

y 

Let J.t = y / x, so that J.t < 1 and J.t2 - J.t < O. By the slope-intercept 
equation for G and algebra, 

y (1 ) (y2 + x2 
y) x-x.=- --y =y -- =y(J.t2 -J.t+1)<y. 

x x x2 X 

Thus, the L. will lie inside Rx just when z ~ p s; and p s < 1. In 
particular, no L1 can lie inside Rx in this case. 

If r should lie inside R., as in figure lOb, then l/x ~ l/y and 
therefore x ~ y and x/y ~ 1. An L. will lie inside Rx in this 
position just when z ~ pr. In particular, an L1 will lie inside R., in 
this position just when 1 ~ pr. Since pr = x/y by equation (2), this 
will happen only when x/y = 1, and thus only when x = y = ~v'2 
and p and r are as shown in figure 9a: the proof of lemma 3.2 is 
complete .• 

LEMMA 3.3 The edges in the path P described at the start of this 
section must intersect those in 8Q at single internal points t and u 
of two opposite edges of Q. (For example, see figure 5.) 

PROOF. The edges in P must intersect those in 8Q at exactly two 
points: otherwise, P would not divide Q into just two subregions. If 
those points fell on adjacent edges, the other two edges would form an 
L1 that would lie entirely in 8A or 8B. By lemma 3.2, its image 
under the isometry a or f3 would then be an L1 <;; R., situated as 
in figure 9a and thus a part of 8A' or of 8B', and one of A' and B' 
would not be a polygonal subregion as required. • 



J. Shilleto, J. T. Smith 15 

Figure 11 is employed in showing that the dissections Q = AU B 
and Rx = A' U B' under consideration must be m-step staircases for 
some m. It suggests the orientation of the viewer but does not itself 
impose further constraints. The two opposite edges of Q mentioned 
in lemma 3.3 and the two edges of Rx of length x are depicted 
horizontally; the others are vertical. 

Q 
U ~P ____ -----1u>-----y-

A I 
I 

I 
I 

E fP? 
I 

I 
I 

I 
I 

I 
I 

1 

1// B 

T~--~----~ 

(a) 

L--___ ---l ... "'. 

x 

(b) 
Fig. 11 

LEMMA 3.4 Each of BA, BB contains a vertical edge of Q. Each of 
their images BA' , BB' under a, {3 contains a horizontal edge of R x , 

lies in the horizontal strip one unit wide between that edge line and a 
parallel line, and contains a unit segment in a vertical edge of Rx. The 
image P I of the path P lies in both strips; therefore x 2:: ~ . 

PRooF(extending over three paragraphs). The first statement fol
lows from lemma 3.3. The isometry a maps the vertical edge E in 
A to a unit segment E' in Rx , which is too long to be horizontal. 
(Primes I designate images under a. Images such as E' that are only 
tentatively placed in figure 11 are dotted or indicated by ? marks.) 
Since A lies between the horizontal edge lines T, U of Q, its image 
A'lies entirely in the strip V' between their images T', U' , which 
are perpendicular to E' at its ends. Two opposite corners of Rx may 
not both fall outside V': otherwise, they would both fall outside A' 
and thus in B' , and the isometry {3-1 would map both into Q, 
contradicting lemma 3.1. If V' were oblique as depicted tentatively in 
figure 11b, it would exclude all four corners of Rx , so it must include 
just one horizontal edge of Rx. Moreover, A' must contain both ends 
of that edge: otherwise, B' would contain a pair of opposite corners. 
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There are just two points in A n U that separate rays in U con
taining no other points of A from rays containing some other points of 
A: namely, the corner p and the end u of the path P. Their images 
u' and p' in A' must therefore be the only two points in A' n U' 
that separate rays in U' containing no other points of A' from rays 
containing some other points of A'. The corners of Rx in A' also 
satisfy this description; therefore, pi and u' must be those corners 
and A' must include that edge of Rx. Since E is the segment in 8A 
that is perpendicular to U at p, its image E' is the segment in 8A' 
that is perpendicular to U' at p'. 

The same reasoning can be repeated with fl, B in place of Q, A. A 
horizontal dotted line in figure 11 b suggests the position of the strip in 
Rx that includes B'. Because the strips must overlap, 2 (1 Ix -1) ::; 1 Ix 
-that is, x::::: 1/2 .• 

The previous discussion distinguished horizontal and vertical fea
tures of figure 11 but not left, right, lower, or upper features. For 
displaying A and A' along horizontal and vertical edges of Q and 
Rx, upper and left were selected arbitrarily and tacitly. These terms 
are employed in the next section. 

4. Construction. In figure 11 b, the horizontal strips in Rx that 
include A' and B' must overlap, at least along a common borderline 
T I. If they have only T I in common, then segments Tin Rx and 
T n Q will constitute I-step staircase paths that separate A', B' and 
A, B, respectively; moreover, x = ~ and A, B will be rectangles 
with dimensions 1 by ~. This proves 

LEMMA 4.1 In the special case of figure 12, the path P is a i-step 
staircase. 
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Q 

A 

fY 1 A' 

B 
fY' l/x = 2 

Fig. 12 

Now turn to the general case, in which x > ~. The horizontal 
strips mentioned in lemma 3.4 overlap as shown by dotted horizontal 
segments in figure 13. 

Q 
P.-_____ x ______ .I=-=x= 

A ,,'/,'U-

I 

17J? /" iT ., 

o /,',,',' 
" " 

1/x -1 
I-x 

o t x 

B 

I 

Fig. 13 

Rx 
p I.-_____ X ____ ~ 

A' 
••••• , ••• ~. 0 ••• ' •••• " •••• • , •••• , •••• 

I fiJ I ? ,..-' 
t:T ~ , 

, ;" ,f' 

0 1 " 

1 
1/x - 1 

fI';;" 

,-' 

I - x o to-- .... ... ..... ... ....... , ... . 

1/x - 1 t ' B' 

x 

I 

Other features that have been established by the previous lemmas 
are indicated by single and double lines. The dashed lines suggest the 
paths P and P', yet to be determined. 
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By lemma 3.4, 8A contains consecutive perpendicular edges of 
lengths x, 1, and 1 - x: segments I up I, Ipo I, and lot I (see 
figure 13). The same must be true of its image 8A' under a. The 
edge I o't' I in 8A' oflength I-x contains points interior to Q' = Rx : 
it is an edge in the path P' = 8~Q,A' = 8~Q,B'. Thus, 8B' contains 
consecutive edges whose lengths are 1, x, and V. -1; the same must 
be true of its image 8B under (3-l. That edge Itoll in 8B of 
length 1 Ix - 1 contains points interior to Q: it is an edge in the path 
P = 8~QA = 8~QB. This proves 

LEMMA 4.2 Boundary edges of Q and Rx are apportioned among 
8A,8B and 8A',8B' as shown in figure 13, which also describes with 
heavy single lines the initial edges lot I and I 0' t' I of the paths P 
and P'. 

The argument that the paths P and P' under consideration 
must adhere to Moese's staircase design is recursive. This paragraph 
describes their bottom and leftmost steps. Later it will be shown how 
successive steps are constructed until the resulting staircases 8 and 
8' reach the top and right edges of Q and Q' = Rx. The first step 
8 1 of the staircase in Q consists of two segments already described: 
the horizontal tread lot I and vertical riser Ito 1 I shown with heavy 
lines in figure 13. According to lemma 4.2 they are both in 8A; the 
riser is in P. Since 8A contains consecutive perpendicular edges of 
length 1, 1 - x, and l/x - 1, so does 8A': edges I p' 0' I, 10' t'l , 
and It' 0'11, where oi = a(01)' The latter two edges are the tread 
and riser of the first step 81' = a[81J of the staircase in Q' = Rx, 
also shown with heavy lines in figure 13. They contain points interior 
to Rx, and thus belong to the path P' = 8~Q,A' = 8~Q,B'. 

As figures 13 and 5 suggest, the paths P and P' will be determined 
by starting with these first steps and repeatedly appending congruent 
steps to the upper right ends of the growing staircases. Each tread will 
have width 1 - x and each riser, height l/x - 1. Thus, k succes
sive stairs will fit into the regions Q, Rx just when these equivalent 
conditions are satisfied: 

k(l-x)~x l/x - 1 ~ 1 k ~ m, where m = II ~ xJ 2: 1.9 

9The L ... J notation stands for the floor function: the largest integer :0; the 
enclosed expression. 
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The composite isometry T = (3 -loa will playa major but tacit role 
in the recursive argument. Its values at the noncollinear points 0, 01, O~ 
agree with those of the translation by vector ooi; therefore, it is that 
translation. The staircase in Q can be defined as 

m-1 

S = U Sk = Sl U T1[Sd U··· U Tm-1[Sd· 
k=l 

However, a and (3-1 figure individually in the recursion; T will play 
no explicit role. 

For k = 1, ... ,m, repeat the argument in the rest of this paragraph. 
Define the points tk and Ok+1 and the k + l"t step Sk+1 = (3 -1 [8' kl 
consisting of the tread 10k tk 1 and riser 1 tk Ok+1l: see figure 14a-14b 
for the case k = 1. Since S~ ~ 8B', it follows that Sk+1 ~ 8B. Since 
k :::; m, this tread and riser both contain points interior to Q. Thus, 
Sk+1 lies in the path P = 8,QA = 8,QB. Define points t~ and 0~+1 

and the k+ 1st step S"+1 = a[Sk+1l consisting of the tread 1 0" t~ 1 and 
riser 1 ~ 0~+1 I· Since Sk+1 ~ 8A, it follows that S~+l:::; 8A'. Its 
tread contains points interior to Rx. If its riser does, too, then S~+1 
lies in the path P' = 8,Q' A' = 8,Q' B' and this recursive argument can 
continue. 

Q R, Rx Rx 
x " x 

A A' 

1 

t, B t; 1/% 

X .O~+l X 
0 ; +1 

I A~.··jr: A' 0; t' k 

. ... 
0 x 0' 

(a) (b) (c) (d) 

Fig. 14 

If that riser 1 t'k 0~+1 1 lay in the exterior of R", -that is, if an 
additional recursive step would overshoot the right edge of Rx as in 
figure 14c-then S"+l = a[Sk+1l could not have lain in A', let alone 
in 8A', because a maps A to A'. Thus, the tread 1 o~ t~ 1 of step 
S" must have ended at the right edge of Rx as in figure 14d. That 
is, k(l - x) = x, k (1/", - 1) = 1, k = m, and the path P ends on 
the top edge of Q. By lemma 4.2, it ends at the point u. Moese's 
conjecture has thus been verified: 
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THEOREM 4.3 For any dissections Q = Au Band Q' = A' U B' of 
square and nons quare rectangles into polygonal subregions with disjoint 
interiors, such that A ~ A', B~ B' , and such that the sets P = 

a~QA = a~QB and pI = a~Q,A' = a~Q,B' are polygonal paths, the 
sets P U 8Q and pI U 8Q' are congruent to the corresponding sets 
for one of Moese's m-step staircase dissections. 

5. Historical and Cultural Notes. This section includes bi
ographical sketches of the mathematicians who originated the study 
reported here, describes the historical context of their work, and dis
cusses a connection with Tarski's seminal research on the definability 
of sets of real numbers. It is mostly adapted from the biographical ma
terial in the book [11] about Tarski's early life and work. For further 
information and references, consult that. 

Parametr and Mlody matematyk. As noted earlier, Polish 
mathematicians lobbied in the 1920s for greater support for secondary
school mathematics. In a report [15] to the Polish teachers' union, 
Tarski proposed an assembly of research mathematicians and educators 
to discuss problems of instruction. In 1930, the government administra
tor, curriculum developer, and entrepreneur Antoni M. Rusiecki founded 
the monthly journal Pammetr for teachers and their best students. In 
1931 Rusiecki started its supplement, Mlody matematyk (Young Math
ematician) specifically for students. The journal was impressive, but 
largely a one-man show. Its 1930 volume included 103 articles and 
notes. Rusiecki contributed 45 of them; 4 others were due to Tarski. 
The first two volumes included 140 problems, with 76 by Rusiecki and 
14 by Tarski. In every issue, Rusiecki complained about overwork! This 
project ran out of energy and finances after two years. It published 
another volume in 1939, but World War II brought it to a halt. The 
high quality of this work and its role as a forerunner of post-War edu
cational development in Poland is featured in reference [11] and the 2019 
dissertation [4] of Ewa Dabkowska. Its history warrants further study. 

Henryk Maese was born in 1886 in southern Poland. He began 
a teaching career around 1910, probably at a private secondary school 
in Kolbuszowa, a small town then in the Austrian Empire. In 1919 he 
moved to Srem, a small city in western Poland, to become a teacher of 
mathematics, physics, and geography at the public school. By 1929 he 
had become its assistant director. In 1930 Moese was appointed direc
tor of the publicly funded classicalliceum in K~pno, at that time near 
the German border. It enrolled about 275 students, about one-fourth 
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Fig. 15. Parametr and Young Mathematician: where this 
study started. 

young women. Moese was responsible for a faculty of about twelve and 
taught mathematics himself for six hours a week to the upper three 
classes. During the early 1930s he contributed to the Parametr and 
Miody matematyk journals that were just described, and was also in
volved in the Boy Scout association. In 1933 he moved on and by 
September 1935 was serving as director of the Mikolaj Kopernik Gim
nazjum in Torun, the major city on the Vistula river midway between 
Warsaw and the Baltic. lO 

Adolf Lindenbaum (figure 6) was born in Warsaw in 1904, to a 
Jewish family that became involved in the motion-picture business; he 
was independently wealthy. After graduating from gimnazjum in 1922, 
Lindenbaum entered the University of Warsaw to study mathematics. 
He was active in student organizations and left-wing politics and earned 
the doctorate in 1927 under the supervision of Wadaw Sierpinski. Over 
the next decade, Lindenbaum made many contributions to the research 
seminar of Jan Lukasiewicz and Alfred Tarski, including the notion of 
degree of equivalence featured in the present paper. Lindenbaum pub
lished about twenty papers on general topology, set theory, and math
ematical logic. Several especially significant ones were coauthored with 
Tarski or Tarski's student Andrzej Mostowski. Some now-fundamental 
concepts in logic are named for Lindenbaum. He married another War
saw logician, Janina Hosiassonowna. During 1940-1941, under the So
viet occupation, he taught at the pedagogical institute in Bialystok. 
Adolf and Janina were murdered near Vilnius after the 1941 German 
invasion. 

lOThe authors have not yet traced Moese's life before or after this period. His 
photograph in figure 4 was taken in Torun. 
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Zenon Waraszkiewicz (figure 7) was born in 1909 in Warsaw, then 
part of the Russian Empire. His parents were schoolteachers. The fam
ily took refuge in Odessa during World War I, then returned to Warsaw. 
Zenon completed secondary school there in 1926 and entered the Univer
sity of Warsaw to study mathematics. He earned the doctorate in 1932, 
supervised by Stefan Mazurkiewicz, and continued research in point
set topology and analysis. Until World War II Waraszkiewicz taught 
in Warsaw secondary schools and served as assistant at the Warsaw 
Polytechnic University and dozent at the University of Warsaw. During 
the German occupation, he taught in the Polish clandestine schools. In 
1945 Waraszkiewicz became a professor at the new University of L6dz 
but died there that same year. 

Alfred Tarski was born in 1901 
to a Jewish mercantile family in War
saw. He attended secondary school 
there under the German occupation 
during World War I and entered 
Warsaw University in 1918, soon af
ter it was re-established as a Pol-
ish institution. He studied with 
mathematicians Mazurkiewicz and 
Sierpinski and logicians Lukasiewicz, 

Fig. 16. Alfred Tarski in 1968 Tadeusz Kotarbiilski, and Stanislaw 

Lesniewski, and quickly achieved ma
jor status as a researcher. Tarski's early publications, especially with 
Stefan Banach applying set theory to the study of area and volume, were 
groundbreaking. Tarski entered academic life just after the newly in
dependent Poland had greatly expanded its university facuities: hardly 
any positions remained open. He never obtained full-time university em
ployment in Poland, just part-time work in Warsaw as a lecturer and re
search supervisor. Tarski was employed full-time as a secondary-school 
teacher. He contributed to the educational journals mentioned earlier, 
and during three summers presented courses on logic to in-service teach
ers. With two colleagues, he coauthored a secondary-school geometry 
text that considerably improved on Wojtowicz's text [21], which he had 
been usingll 

Burdened with those jobs, Tarski nevertheless attained world ac-

11 For a detailed description and translations of Bubstantial portions of the textbook 
[21 by Zygmunt Chwialkowski, Wa.claw Schayer, and Taxski, see [11, §9.9 and 
chapter 131. 
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claim as a researcher in set theory and logic. From his seminar stemmed 
many results published during 1930-1960 that are now fundamental. 
The next note in this section describes an example. At the onset of 
World War II in September 1939, Tarski was attending a conference 
of the Unity of Science movement at Harvard and was stranded there. 
His wife and children survived the War by hiding; all other family mem
bers were murdered during the Nazi occupation. After several unsettled 
years, Tarski obtained a professorship at the University of California, 
Berkeley. There he founded what would become the world's leading cen
ter of research in logic. Around 1970 he lectured to general audiences 
on the subject of this article. The present authors attended. 

Sidelight on Definability. Tarski noticed that Moese's result and 
the theorem that verifies his conjecture can be formulated in real arith
metic: 

(VXER)(3mEN)x=m:1 <==? (0<x<1)&('Pl(X)V'P2(X)V",))) (3) 

[

V, 3. . . . . . ~or all, for s~me =, < . . . . . .. eq~, l~ than E. . . belongs to ] 
<==> .•.•• If and only If +,-,x,/ ... anthmetIc R.o. real numbers 
===? ••••• implies operations N. . . positive integers 
&, V, --, . . . and, or, not 0, 1. . . . . . . . . constants 

For each k, the statement 'Pk will express the existence of a k
step staircase decomposition as described earlier, in terms of Cartesian 
coordinates. It will use only the symbols in the left-hand and center 
columns of the displayed glossary, parentheses, and variables such as x 
for real numbers, but not the ellipsis .... With a real variable m, 
statement (3) is equivalent to 

(ltm>O)(mEN ¢=? ('P1 (m:l)V'P2 (m:l)V"')) 
This could be interpreted as a definition of N in terms of real arithmetic, 
if the underlying logic supported the infinite disjunction 'PI (x) V 'P2 (x) V 
.. '. That, however, is a nonstandard logical feature. It is essential here 
because there can be no upper bound for m in terms of x: if x ---+ 1, 
then m ---+ 00. In fact, Tarski's research in Warsaw had shown that N 
cannot be defined in terms of real arithmetic using standard logic that 
supports only finite disjunctions.12 

lOIn work completed in the 1920s but not published in full until decades later, Tarski 
had formulated an axiom system for real arithmetic using only the standard logical 
features just mentioned. See his research papers [16, page 233] and [19, pages 
48-50, 53]. In later years, Tarski and his students and colleagues investigated 
in6nitary logic deeply. Tarski discussed the material in this sidelight in his 1970 
lecture. 
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Schody: Jedyny spos6b na przejscie 

J. Shilleto i James T. Smith 

Streszczenie. W plaskiej geometrii euklidesowej dowolne obszary wie
lokljtne Q, Q' 0 rownej powierzchni mozna podzielie na t~ sam,! 
liczb~ n parami przystaj'lCych podregionow. Latwo sprawdzie, czy 
Q jest kwadratem jednostkoWYffi, Q' jest prostokljtem (m + 1) / m 
na m/(m+l) dlaniekt6rychliczbcalkowitych m, i n=m+l. W 
latach dwudziestych XX wieku znany logik Alfred Tarski, wowczas na
uczyciel podstawowej geometrii w Warszawie, zauwaZyl inny podzial 
tego samego Q, Q' z n = 3. Opisal to w pionierskim czasopi
smie dla nauczycieli i uczni6w szkol srednich, po czym zapytal, czy 
istniej'l inne takie podzialy dla n = 2? Henryk Moese, nauczyciel, 
odpowiedzial tak, w niektorych przypadkach: m- "schodowe" ci~cia s,! 
mozliwe dla tych WYffiiarow. Moese przypuszczal, ze tylko takie sek
cje Q, Q' S,! tymi, 0 ktore padlo pytanie. Tarski poinformowal, ze 
zostalo to potwierdzone, ale d0w6d hyl zbyt skomplikowany, aby go 
opublikowac. Kilkadziesi"t lat p6zniej Tarski przedstawil ten material 
szerokiej publicznosci akademickiej, w tym talcie obecnym autorom. 
PotraktowaliSmy przypuszczenie Moese'a jako wyzwanie, opracowali
smy sposob na jego weryfikacj~ i przedstawilismy tutaj ten argument. 
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Uzywaj,!c jedynie elementarnej geometrii, z wieloma figurami, mozna 
przypuszczac, jakich metod Tarski mogl si~ spodziewae przy rozwilj
zywaniu innych problem6w w tym cZB8opismie, ale nie przypomina 
zadnych argumentow w dost~pnej literaturze. Opisujemy informacje 0 

polskich wysilkach podejmowanych w latach trzydziestych XX wieku 
na rzecz poprawy nauczania w szkolach srednich oraz 0 roli semina
rium badawczego Tarskiego. 

2010 Klasyfikaeja tematyezna AMS (2010): OlA60 (OlA70, OlA73). 

Slowa kluczowe: Matematyka i matematycy XX wieku w Polsce, U ni
wersytet Jozefa Pilsudzkiego w Warszawie, Alfred Tarski, Parametr, 
elementarna geometria. 
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